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A B S T R A C T

RNA molecules play important roles in biological processes, their functions are intimately related to structural
dynamics. Elastic network model (ENM) has achieved great success in predicting the large-amplitude collective
behavior of proteins. However, for loosely-packed RNA structures, ENM models can not reproduce their dy-
namics as accurate as the densely-packed ones. In this work, the multiscale Gaussian network model (mGNM) is
extended to predict dynamic properties of RNAs. All tests are performed on a non-redundant RNA structure
database we constructed. In results, for B-factor reproduction, encouragingly mGNM achieves a significant
improvement with the average value of Pearson correlation coefficient (PCC) between theoretical and experi-
mental B-factors being 0.732, much higher than 0.494 and 0.321 obtained by conventional GNM and parameter-
free GNM (pfGNM) models, respectively. Furtherly, mGNM attains a larger improvement in B-factor prediction
for loosely-packed parts. Additionally, based on the analysis of functional movements, mGNM can properly make
domain decompositions for tRNAAsp and xrRNA. This work can strengthen the understanding of the intrinsic
dynamics of RNAs, and mGNM is expected to have a bright prospect in dynamic analyses for loosely folded
biomolecules, especially RNAs.

1. Introduction

Although composed of only four chemically similar nucleotides,
RNAs play important roles in gene expression and regulation [1].
Specifically, RNA is capable of catalytic activity [2] and even classic
RNAs such as ribosomal, transfer and messenger RNAs play surprisingly
complex roles in protein synthesis [3]. The complex functions of RNAs
are intimately related to their abilities to modulate structural dynamics
[4]. Characterizing the functional dynamics of RNA molecules becomes
increasingly important in RNA biology.

Molecular dynamics (MD) simulations can be used to study the
dynamic behaviors of RNAs. However, the atomic-level simulation is
often found too expensive and time consuming to study the large-scale
conformational motion of RNAs. Meanwhile, the limited accuracy of the
physics-based force field has been a bottleneck to describe the subtle
atomic interactions within RNA molecules surrounded by solvent and
ions because any atomic interaction error can dramatically impact the
distribution of the MD trajectories [5,6].

The elastic network model (ENM) has been shown to be a particu-
larly effective computational technique to investigate the function-re-
levant motions of proteins and even RNAs [7,8]. Tirion first represented
the intramolecular interactions as elastic potentials of springs and

reproduced the molecular low frequency motional modes [9]. Yang
et al. presented a web server, oGNM, to calculate the normal modes of
motions for proteins and oligonucleotides and their complexes [10]. For
nucleic acids, researchers developed the ENM models with different
number of nodes representing a nucleotide to study their functional
cooperative motions [2,8,11–14]. Our group proposed ENM-based
methods to study the issues involved in the folding and allosteric pro-
cesses of biomolecules [15–17]. In the conventional ENM, a biomole-
cule structure is modeled as an elastic network of certain atoms in
which the node pairs within a given cutoff distance are considered to
have interactions and are connected by a set of Hookean springs with a
uniform force constant [18]. Generally, the low-frequency motion
modes obtained by ENM represent the large-scale collective motions
relevant to molecular functions. In order to improve the method, many
modifications have been proposed in recent years, mainly aiming at the
two points of the conventional ENM: the fixed cutoff distance and
uniform force constant [19]. As we know, in molecules different in-
teractions, such as covalent, Van der Waals, hydrophobic and electro-
static interactions [20], have different action ranges and do not sud-
denly decay to zero when the distances are beyond certain values. Thus,
Riccardi et al. changed the identical spring constant in conventional
ENM into a distance dependent function [21]. Later, Yang et al. further
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developed a parameter-free Gaussian network model (pfGNM) [22]
where there is no cutoff distance and all residue pairs are considered to
have interactions with the strength inversely proportional to the square
of the inter-residue distance. Recently, considering the different action
ranges of different interactions, Wei and coworkers proposed a multi-
scale Gaussian network model (mGNM) [23] where inter-residue in-
teractions are considered as the sum of different interactions with dif-
ferent spring’s strengthens represented by kernel functions. The mGNM
has been successfully applied on dynamic analysis of proteins with the
prediction of B-factor significantly improved by more than 13% com-
pared with the conventional GNM [23].

Although ENM model has been successfully used to investigate the
large-scale functional motions of many proteins including GroEL,
GroEL-GroES complex and calcium ATPase [24–27], it meets difficul-
ties in dynamic analysis for the loosely folded systems (not well-packed
structures), especially for RNA molecules [28,29]. Sen et al. also found
that with the conventional GNM, the flexible prediction of protein in-
ternal residues (packed compactly) is generally more accurate than that
of surface residues (relatively packed loosely) [30]. The partial reason
may be related to the identical connection strength in the conventional
ENM, which has also been pointed out by Robert et al. [30]. Ad-
ditionally, for RNA molecules which are highly negatively charged, the
long-range electrostatic interactions within them are much stronger
than those within proteins, which makes the conventional ENM with a
cutoff distance not suitable for RNA dynamic analysis. Based on the
analyses above, we think that the mGNM model with multiscale in-
teractions considered should perform well on the loosely folded RNA
structures.

In this work, we extend the mGNM method to the analyses of RNA
dynamics, and compare the results obtained by mGNM with those by
conventional GNM and pfGNM models. Additionally, we analyze the
motional coupling with mGNM on RNA molecules and found this model
can properly make domain decompositions.

2. Methods and materials

2.1. Database of RNA structures

We downloaded all the 1,374 structures containing only RNA mo-
lecules (October 2018) from Protein Data Bank (PDB) [31] (PDB,
http://www.rcsb.org/). Considering the study aim, these structures
were further filtered, and those meeting the following criteria were
retained: [1] X-ray crystal structure, [2] structure resolution better than
3.0 Å, [3] number of nucleotides between 60 and 200, [4] sequence
identity less than 90%. Here, we used CD-HIT [32–34] to cluster the
RNAs. The sequences with more than 90% identity were put into one
cluster, and the structure owning the most nucleotides in each cluster
was selected as a representative. Finally, the database consists of 77
RNA structures (Table S1 in Supplementary material).

2.2. Gaussian network model

2.2.1. Conventional Gaussian network model
In the conventional Gaussian network model (GNM), a RNA struc-

ture is represented as a coarse-grained and elastic network where sev-
eral nodes (here, P atom selected) are used to replace one nucleotide
and the node pairs that are less than a cutoff distance (Rc) apart are
connected by springs with a uniform force constant [35]. Thus, the total
internal potential energy of the network of N nucleotides can be written
as:
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where ΔRi and ΔRj are the displacement for the ith and jth nodes
respectively, the column vector ΔR represents the fluctuation of the N

nucleotides, and γ is the force constant of the springs. The Kirchhoff
matrix Γ is an N×N symmetric matrix where the elements can be
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= >

=

if i j andR R
if i j andR R

if i j

1,
0,

,
ij

ij c

ij c

j j i
N

ij, (2)

where Rc is the cutoff distance and Rij is the distance between the ith
and jth nodes.

2.2.2. Parameter-free Gaussian network model
Different from the conventional cutoff-based GNM, the parameter-

free Gaussian network model (pfGNM) adopts a distance-dependent
spring constant set [22]. Here in the method, also P atoms are selected
as nodes. All the node pairs are considered to have interactions and
connected by the springs with a force constant being inversely pro-
portional to the square of the distance between the two nodes. By this
simplification, the total potential energy has the same formula as Eq.
(1), but the Kirchhoff matrix Γ has the different form that can be de-
scribed as:
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where Rij is the distance between the ith and jth nodes. The node pairs
that are far apart have weaker interactions than those pairs that are
close to each other.

2.2.3. Multiscale Gaussian network model
Based on the conventional GNM, the multiscale Gaussian network

model (mGNM) [23] is improved in two aspects: [1] not one but mul-
tiscale interactions are considered in a superposition form of springs
with different strengths; [2] not cutoff but different kernel function
based spring force constants are adopted to represent interactions.
Here, still P atoms are selected as nodes, and different exponential
decay kernel functions [36] are used to represent interactions which
can be written as:

= >R e( ; , ) , 0ij
R( / )ij (4)

where Rij is the distance between the ith and jth nodes, and the para-
meters η and κ control the decay extent of the kernel function. In-
tramolecular interactions can be represented as the sum of different
kernel functions, and the corresponding Kirchhoff matrix of the nth
kernel function can be described as:
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When n (in this work n=3 in order to balance the accuracy and
computational time) kernel functions are considered, the corresponding
multiscale Kirchhoff matrix can be given by:

= +a b M· ·
n

n n
(6)

where Γn is the corresponding Kirchhoff matrix of the nth kernel
function which can be obtained from Eq. (5), M is a N×N matrix with
all elements being 1, and the parameters an and b can be obtained by
the least square method:
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where Bi
exp is the experimental B-factor of the ith node. The above

formula is from the method of mFRI (multiscale flexibility-rigidity
index) proposed by Wei and coworkers [23,36,37]. Theoretically, for
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the Kirchhoff matrix (diagonally dominant matrix), the diagonal ele-
ments (connectivity strengths) reflect the rigidities of nucleotides, and
are also taken as rigid indexes. Here, the kernel function weights are
determined by minimizing the difference between the diagonal ele-
ments of Kirchhoff matrix and the inverses of experimental B-factors,
which is consistent with mFRI theory proposed by Wei and coworkers
[23].

2.3. Fluctuation and the cross-correlation

Gaussian network model method simplifies the complicated poten-
tial into a quadratic function in the vicinity of the equilibrium state,
which allows for decomposing the motions into normal modes with
different frequencies. These normal modes can be obtained by decom-
posing the inverse matrix of Kirchhoff matrix Γ−1:

=
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k

N
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2

1
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where λκ and μκ are the eigenvalue (motional frequency) and eigen-
vector of the kth motional mode, respectively. The mean square fluc-
tuation of the ith nucleotide and the cross-correlation between the ith
and jth nucleotides can be calculated by the following two equations as
the sum of contributions from individual normal modes.
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where kB is the Boltzmann constant, T is the absolute temperature, and
the meaning of γ is the same as that in Eq. (1). B-factors, also called the
crystallographic temperature factors, contain important information
about individual atoms’ thermal motions in a macromolecule, reflecting
the local structural flexibility of the ground-state conformation. Theo-
retically, according to the Debye-Waller theory, the B-factor of the ith
nucleotide can be calculated according to the Eq. (11), which is pro-
portional to its the mean square fluctuation (MSF).
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The normalized cross-correlation between the two nucleotides can
be written as:
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R R
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This value varies from −1 to 1. Positive values mean correlated
motions happening along the same direction and the negative indicate
correlated motions along the opposite direction. A higher absolute
value represents a stronger correlation between the two nucleotides.
The value Cij=0 means that the motions of nucleotides are completely
uncorrelated.

For conventional GNM, pfGNM and mGNM models, the B-factors
and cross-correlations are all calculated according to Eq. (11) and (12)
respectively based their own Kirchhoff matrixes obtained from Eqs. (2),
(3) and (6) respectively.

2.4. Pearson correlation coefficient

The Pearson correlation coefficient (PCC) defined as follows is used
to optimize the parameters in conventional GNM and mGNM models.
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where Bi
the and Bi

exp represent theoretical and experimental B-factors of

the ith nucleotide, respectively, and Bi
the and Bi

exp the corresponding
expected values. The PCC value ranges from −1 to 1, and a larger PCC
value means the theoretical result is closer to the experimental data.

It should be pointed out that for conventional GNM and mGNM
models with parameters (except for pfGNM since there is no para-
meters), the optimized parameters are obtained to construct the cor-
responding GNM models through maximizing the PCC value between
the theoretical and experimental B-factors for each RNA. During this
process, for conventional GNM, the parameter cutoff distance value
systematically varies in the range of 1–25 Å with a step size of 0.1 Å,
and for mGNM, the six parameters {η1, κ1, η2, κ2, η3, κ3} vary in the
ranges of 1–15, 1–10, 1–20, 1–10, 1–30, and 1–10, respectively with the
same step size of 1.0. The predefined ranges are based on the work by
Wei and coworkers [23] where the parameters vary in the range of {η:
1–25, and κ: 1} for proteins. Here it is noted that in mGNM optimization
process, for a given set of six parameters, there are still other para-
meters an and b in Eq. (6) to be determined, for which we use the least
square method as shown in Eq. (7). For clarity, this process is shown in
Fig. S2.

3. Results and discussion

3.1. Reproduction of B-factor on RNA dataset

The accurate prediction of B-factors provides an effective starting
point to understand the dynamics of biomolecules. For the 77 RNAs, we
constructed their mGNM models, calculated the theoretical B-factors
and obtained PCC values under the optimal parameter set. In order to
evaluate the performance of mGNM on RNA molecules, we compared
the B-factor reproduction by mGNM with the corresponding results by
conventional GNM and pfGNM models. The results are shown in Fig. 1
and the detailed data are given in Table S1.

From Fig. 1, the PCC values obtained by mGNM are significantly
better than those by the other two methods for almost all the RNAs.
Compared with the conventional GNM (see Fig. 1 (A)), mGNM achieves
the improvements for 76 out of 77 cases with only one case (GlmS ri-
bozyme, PDB ID: 2GCS) having a drop of 0.009 in PCC. Compared with
pfGNM (see From Fig. 1 (B)), generally mGNM obtains relatively larger
improvements. The average value corresponding to mGNM is 0.732,
much higher than 0.494 and 0.321 obtained by conventional GNM and
pfGNMmodels respectively. The improvements reach to 48% and 128%
respectively. In previous work, Xia et al. performed mGNM on 364
proteins and found the improvement is 13% compared with the con-
ventional GNM [23]. Here it should be pointed out that in our work the
optimized parameters for each case were used (the optimization process
of parameters is described in detail at the end of Methods and Mate-
rials.) and they used a fixed set of parameters regardless of mGNM and
conventional GNM models. Although this, the results still have com-
parability to some extent. The comparison suggests that more im-
provements can be achieved by mGNM method to be performed on
RNAs than on proteins. In the following part, we will give the possible
reasons (see section of B-factor reproduction for regions with different
packing density). Furtherly from Fig. 1, evidently, the improvements
are more remarkable for the cases where the conventional GNM and
pfGNM models perform poorly, which is very important for a modified
method. Additionally, comparing conventional GNM with pfGNM, it
can be seen that the former performs slightly better than the latter on
RNAs. On proteins, the similar result was also found by Mendonca et al.
[38], while the contrary one was found by Zhang et al. [39], which is
probably related to the different proteins and different fixed cutoff
distances used in the two works.

For pfGNM, Yang et al. tried different inverse powers of the inter-
residue distance to mimic spring constants, and found that the inverse
2nd power clearly outperforms others in B-factor predictions for
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proteins [22]. We also constructed the pfGNM models with different
inverse powers 2–10 for the RNAs, and compared the average PCC
values obtained from them, as shown in Table S2. The results show that
the average PCC value corresponding to the inverse 2nd power is the
highest, consistent with the previous result on proteins, which is why
we adopted the inverse 2nd power here.

3.2. Case study

Table 1 lists the PCC values obtained by the three methods for the
four cases where the conventional GNM performs the worst (2GDI:
0.095, 1D4R: 0.132, 4XW7: 0.175, 1Y27: 0.236) while mGNM achieves
the most improvements more than 0.5 for three cases (1D4R: 0.814,
4XW7: 0.688, 1Y27: 0.813) and a medium one for one case (2GDI:
0.535). In the following, the detailed results and analyses will be given
for the three cases 1D4R, 4XW7 and 1Y27. It should be pointed out that
for the above three methods we mentioned, the corresponding force
constants were taken into account to obtain the absolute B-factor va-
lues.

1D4R is a fragment of helix 6 of human signal recognition particle
(SRP) RNA [40] which presents an irregular shape and makes the RNA
structure (loosely folded) quite different from proteins (see Fig. S1 (A)).
It can be deduced that the conventional GNM (cutoff 7.9 Å; the force
constant 0.861within the range recommended by the literature [41].)
with a fixed cutoff distance and a uniform force constant can not give a
good flexible prediction (PCC: 0.132), as shown in Fig. 2 (A) and (B)
(the reproduced B-factors and RNA surface with them mapped onto).
The pfGNM model also fails with PCC value being 0.069. When the
multiscale interactions considered, the mGNM elevates the value to
0.814. The parameters of the three kernel functions are Ф1: η1=1,
κ1=2; Ф2: η2=7, κ2=4; Ф3: η3=7, κ3=5, respectively. From the
Fig. 2 (A), the fluctuations obtained by conventional GNM and pfGNM

models are far different from the experimental values (the corre-
sponding force constant has been multiplied), while mGNM can accu-
rately predict the highest peak of fluctuation although the other pre-
dicted highest peaks are not as high as the experimental ones.
Additionally, for most of low valley regions in fluctuation, mGNM can
relatively accurately give their locations in structure, while their pre-
dicted B-factors are more or less higher than the corresponding ex-
perimental ones.

4XW7 is a crystal structure of ZMP riboswitch [42] which includes
two substructure domains (P1-P2 and P3 stems) long-range coupling
with each other, and a junction J13 and pseudoknots (PK regions) that
plays an important role in stabilizing the structure (see Fig. S1 (B)).
Still, the conventional GNM (cutoff 16.1 Å, the force constant 0.854
within the range recommended by the literature [41].) and pfGNM
models fail in predicting its flexibility (PCC values: 0.175 and 0.054
respectively), while mGNM can reproduce a relatively good result (see
Fig. 3 (A) and (B)) with PCC being 0.688. The parameters of the three
kernel functions are Ф1: η1=11, κ1=7; Ф2: η2=16, κ2=5; Ф3:
η3=10, κ3=7, respectively. From the two figures, mGNM can well
predict the two most flexible regions L2 and J13. Studies have shown
that the hydrogen bonds in J13 are easy to be destroyed, indicating its
relatively large flexibility [43]. For the three low valleys (two PK re-
gions and partial P1 stem, some of which consist the ligand binding
pocket), mGNM gives a relatively even prediction. Around these re-
gions, we find some Mg2+ ions near PK regions, and iridium hexam-
mine near the P1 stem in the crystal structure. Their existence can
stabilize the local structures to some extent. Maybe this is the main
reason why mGNM (with ions and iridium hexamine not considered)
does not give a relatively rigid prediction for these regions.

1Y27 is a G-riboswitch-guanine complex [44] where the G-ri-
boswitch forms a structure similar to a tuning fork with the ligand
guanine binding to its pocket (see Fig. S1 (C)). In the network con-
struction with mGNM, the parameters of the three kernel functions are
Ф1: η1=4, κ1=2; Ф2: η2=4, κ2=4; Ф3: η3=7, κ3=9, respectively.
The PCC value reaches to 0.813, much higher than the corresponding
values 0.236 and −0.195 obtained by the conventional GNM (cutoff
12 Å, the force constant 0.259 within the range recommended by the
literature [41].) and pfGNM models, respectively (see Fig. 4 (A)). From
Fig. 4 (A), the evident fluctuation peaks (except for the last one cor-
responding to 3′ end of P1 stem) can be well reproduced by mGNM
while there are almost no changes for the fluctuations produced by the
other two models. From Fig. 4 (B), the predicted highest peak is cor-
responding to 5′ end of P1 stem which will unfold first when the ligand

Fig. 1. Comparison of Pearson correlation coefficient between experimental and theoretical B-factors obtained by mGNM with those obtained by conventional GNM
(A) and pfGNM (B) on the 77 RNAs.

Table 1
PCC values obtained by the three GNMs for the four cases where the conven-
tional GNM performs the worst while mGNM achieves the most improvements
for three cases and a medium one for one case.

PDB code GNM pfGNM mGNM

1D4R 0.132 0.069 0.814
2GDI 0.095 −0.013 0.535
1Y27 0.236 −0.195 0.813
4XW7 0.175 0.054 0.688
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disassociates from the RNA [44]. The other four predicted highest peaks
correspond to P2 and P3 stems which will unfold after P1 stem [16,44].
The junction region including J12, J23 and J31, constitutes the ligand
binding pocket [44] and presents low fluctuation in our prediction,
consistent with the experimental trend. As for the main shortcoming of
mGNM in this case, we can see that some valleys like L2 and J23 seg-
ments in the experimental fluctuation can be predicted as valleys but
the predicted values are still a little higher than the corresponding
experimental ones, which may also be due to the solvation and ion
effects not considered in mGNM method.

Based on the analyses above, mGNM can better reproduce the
flexibility of RNA molecules than conventional GNM and pfGNM
models. The main reason is that the multiple kernel functions integrated
in mGNM can take into account not only the multiscale interactions to
some extent but also these interactions in a decay form instead of in a
cutoff-based form, which is more important in constructing the elastic
networks for RNAs (with low packing density and rich negative
charges) than for proteins. Additionally, it can be seen that mGNM has a
good capability to predict peaks of fluctuation, while for some low
valleys (rigid regions) mGNM performs not very well. For the former,
the likely reason is that the soft connections considered in kernel
functions can confer high flexibility to some regions, and for the latter
the partial reason lies in that the solvent and ion effects are not con-
sidered in mGNM. Taking into account these effects can enhance the
connection strength and therefore give a relatively rigid prediction.

We noted that the cutoff distance values used in our optimized

conventional GNM models for the three cases are different from the
ones 10–20 Å [12] usually adopted in previous studies for the con-
ventional one-node GNM model. Thus, we performed the conventional
GNM with different cutoff values for the three cases, and the PCC values
are 0.0889, −0.1589 and −0.0674 under 16 Å for cases 1D4R, 4XW7
and 1Y27, respectively, which are all lower than those from our opti-
mized models respectively, and the case is the same for other cutoff
values. In fact, by reviewing literatures, we found that evidently dif-
ferent cutoff values were ever used in constructing conventional one-
node GNM models for different kinds RNA molecules, such as 15 Å for
Ribozyme [12], 20 Å for thiM thiamine pyrophosphate riboswitch [8],
which we think is partially due to the complexity of RNA structures.

3.3. B-factor reproduction for regions with different packing density

It has been a difficulty for GNM methods to perform on loosely
folded structures or regions [29], we want to know whether the mGNM
can give any improvement in dealing the issue. To detect it, we ana-
lyzed the performance of mGNM on regions with different packing
densities. The packing density of where a nucleotide exists is defined as
the number of its neighboring nucleotides less than 9 Å apart from it.
The smaller the number is, the more loosely the nucleotide folds. For
nucleotides with different packing densities, we calculated their abso-
lute deviations of the theoretical from experimental B-factors to reflect
the performances of mGNM on them for flexibility prediction, as shown
in Fig. 5. We also give the corresponding results obtained by

Fig. 2. (A) Theoretical B-factors of 1D4R obtained by mGNM, conventional GNM and pfGNM with the experimental values shown for comparison (the absolute B-
factor values were obtained for the three methods). (B) RNA surfaces colored by experimental B-factors (Exp) and theoretical ones obtained with the three GNMs.
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conventional GNM for comparison (the results from pfGNM are not
given due to its not good performance). From Fig. 5, it can be seen that
with the increasing of packing density the absolute deviations obtained
by both conventional GNM and mGNM have an evident decrease, which
is consistent with previous studies that GNMs are more suitable to be
performed on the densely folded structures [21]. Furtherly, we found
that in terms of the average deviations, their values from mGNM are far
less than those from conventional GNM regardless of how the packing
density is, which verifies again the better potency of mGNM in re-
producing molecular flexibility. Additionally, encouragingly, the im-
provements are much larger for the relatively more loosely folded re-
gions, which can explain the reason why the better flexibility prediction
can be obtained by mGNM on RNAs (loosely folded) than on proteins
(densely folded). Thus, mGNM with multiscale interactions considered
has a strong capacity for molecular flexibility prediction, especially for
the loosely folded structures or regions.

3.4. Domain decomposition with mGNM

The mGNM has a good performance in RNA flexibility analysis.

Then we want to know whether the model can capture the functional
coupling within RNAs. To detect it, we selected two biologically im-
portant RNAs, yeast tRNAAsp (PDB ID: 2TRA) [45] and xrRNA (PDB ID:
5TPY) [46], as representatives to explore the issue. In order to obtain
the motional coupling, we calculated the normalized cross-correlations
(Eq. (12)). The cross-correlation between two nucleotides is between
−1 and 1, with positive values representing cooperative motions, and
vice versa.

The crystal structure of tRNAAsp is shown in Fig. 6 (A), which
consists of 73 nucleotides folding in an L-shape conformation. In con-
structing the network by mGNM, the parameters of three kernel func-
tions are Ф1: η1=9, κ1=1; Ф2: η2=20, κ2=2; Ф3: η3=25, κ3=4,
respectively. The PCC between theoretical and experimental B-factors is
0.807. Fig. 6 (B) shows the cross-correlation map of tRNAAsp. From
Fig. 6 (B), the structure is roughly divided into five parts, of which parts
1 and 5 correspond to the acceptor arm, part 3 the anticodon region,
and parts 2 and 4 the D-loop and T-loop in the Fig. 6 (A), respectively. In
addition, evidently regions 1 and 5, 2 and 4 are positively correlated,
indicating that they are coupled and cooperative in motion. Thus, the
five parts can be grouped into three domains with parts 1 and 5 coupled

Fig. 3. (A) Theoretical B-factors of 4XW7 obtained by mGNM, conventional GNM and pfGNM with the experimental values shown for comparison (the absolute B-
factor values were obtained for the three methods). (B) RNA surfaces colored by experimental B-factors (Exp) and theoretical ones obtained with the three GNMs.
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to each other as an arm of the L-shaped conformation corresponding to
acceptor stem, part 3 forming the other arm corresponding to anticodon
loop and stem, and parts 2 and 4 constituting the elbow, which is
consistent with the collective motions of tRNAAsp low-frequency modes
[47].

The xrRNA containing 71 nucleotides, used by the Zika virus to
make sfRNA by co-opting a cellular exoribonuclease [46], is shown in
Fig. 6 (C). In constructing the network by mGNM, the parameters of
three kernel functions are Ф1: η1=15, κ1=8; Ф2: η2=15, κ2=10;
Ф3: η3=5, κ3=5, respectively. The PCC between theoretical and ex-
perimental B-factors is 0.743. Fig. 6 (D) shows the cross-correlation
map of xrRNA. From Fig. 6 (D), the structure can be roughly divided
into four parts, of which part 1 and 2 correspond to the P1 and P2
stems, respectively, part 3 contains P3 and S4, and Part 4 consists of the
P4-L4 in Fig. 6 (C). Evidently, parts 1 and 3 are positively correlated,
indicating that they are coupled together in motion, which has been
described in a previous study [46] that is part 1 (P1) and a part of part 3
(P3) form a ring and the 5′ end passes through P3. For part 4 (P4-L4),
previous study has pointed out that P4-L4 is highly conserved and the
stacking stabilizes its structure, and additionally it can bind to exori-
bonuclease and change the enzyme’s activity [46]. From above, the
decomposed domains by mGNM based on the cross-correlations are in
agreement with the experimental data to some extent.

3.5. Discussion on the difference in parameter sets of kernel functions for
RNAs

It is noted that there exists a big difference in parameter sets of
kernel functions for different RNAs, as shown in the section of Case
study. We have analyzed the possible reasons as follows. Firstly, as we
know, ion types and numbers embedded in RNA structures have a
significant effect on RNA stabilities due to their strong negative elec-
tricity. In some experimental structures such as 1T0D and 3BNN there
are no ions, while there are many ions of different types in others such
as 2YIE (2 K+ and 14Mg2+) and 4JF2 (15 Cs+ and 4Mg2+). However,
the current mGNM model does not explicitly take ions into account.
Thus, the effects of the ignored ions will be considered into the opti-
mized parameter sets in order to reach the best correlations between
the theoretical and experimental B-factors for RNAs, which may induce
a big difference in parameter sets for different RNAs. Secondly, the
large difference in packing density may also be a factor. RNAs tend to
fold into complex structures, some of which are densely packed, but
others are loosely packed [48]. Different packing densities lead to dif-
ferent distribution patterns of nucleotides in space. The complexity of
the interactions between nucleotides makes it difficult to use the same
or similar functions to describe the interactions within RNAs of dif-
ferent packing densities. The last but not the least, due to the negative

Fig. 4. (A) Theoretical B-factors of 1Y27 obtained by mGNM, conventional GNM and pfGNM with the experimental values shown for comparison (the absolute B-
factor values were obtained for the three methods). (B) RNA surfaces colored by experimental B-factors (Exp) and theoretical ones obtained with the three GNMs.
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electricity of RNAs, the different solution conditions (such as pH value,
temperature, ion concentration and so on) for RNA folding may also
bring about the big difference in parameter sets. In fact, in the tradi-
tional GNM model based on one node, the only parameter cutoff dis-
tance also has a larger variation range for RNAs (10–20 Å) [12] than for
proteins (6–12 Å) [49].

Since the parameter set of kernel functions needs to be optimized,
the mGNM can not be truly applied in the blind B-factor prediction for
RNAs. It is worth noting that the recent work by Bramer et al. has
achieved the blind B-factor prediction for proteins by integrating the
machine learning and advanced graph theory, namely, multiscale
weighted colored graphs (MWCGs) method [50]. In this work, the
convolutional neural network (CNN) is trained with the fixed matrix
composed of 30×8 kernel functions and other nine quantities as fea-
tures. We will try the strategy in the future work and hope to achieve a
blind B-factor prediction for RNAs. Additionally, it should be noted that
the aim of our work is to build a Gaussian network model which is able
to analyze the functional dynamic properties of RNAs such as motional
correlations between different parts, and low-frequency collective mo-
tions encoded in RNA structures, which is different from the aim of the
work by Bramer et al.

4. Limitations

It should be mentioned that there are some limitations in our cur-
rent study. First, we only performed one-node (P atom) GNM models,
and did not try two-node and three-node GNM models. Yang et al.
pointed out that the conventional GNM with one node per nucleotide is
better than the models with three nodes per nucleotide in reproducing
B-factors for 64 oligonucleotides [10]. Studies show that the conven-
tional GNM model with two nodes presenting a nucleotide can give a
better result in reproducing B-factor for a DNA octahedron [51]. Here,
the three kinds of GNM models all use one P atom to represent a nu-
cleotide, and thus they are of comparability. Second, the domain de-
composition based on the coupling analyses needs to be done on more
RNA molecules in order to verify the effectiveness of mGNM. For the
two points above, the further deep research works are now underway.

5. Conclusion

Accurately characterizing the dynamic properties of RNA molecules
is important for us to understand their various biological functions.
Currently, the elastic network model is an effective coarse-grained
method for exploring the large-scale functional motions of bio-macro-
molecules. The conventional Gaussian network model (GNM) works
well on proteins, but usually performs not ideally on the loosely folded
RNAs. In this work, we extend the multiscale Gaussian network model
(mGNM) to the analyses of RNA dynamics. We evaluate the perfor-
mance of mGNM on a non-redundant database containing 77 RNAs
constructed by us, and compare the results with those obtained by
conventional GNM and pfGNM models. Under the optimal parameter
set, mGNM achieves a significant improvement in reproducing B-factors
with the average value of PCC between the theoretical and experi-
mental B-factors being 0.732, much higher than 0.495 and 0.321 ob-
tained by the conventional GNM and pfGNM models, respectively. The
flexibility prediction for nucleotides with different packing densities
indicates that GNMs are more suitable to be applied on the densely
folded regions. And encouragingly, compared with conventional GNM,
mGNM achieves a great improvement (regardless of how the packing
density is), especially for the loosely folded regions, which can explain
why much more improvement can be obtained by mGNM on RNAs than
on proteins. Finally, the functional coupling is analyzed for tRNAAsp and
xrRNA systems and the results show that mGNM can properly make
domain decompositions. In short, mGNM with the multiscale interac-
tions considered is expected to have a bright prospect in RNA dynamic
analysis.

6. Significance

Accurately obtaining the dynamical information is a pivotal step
toward the understanding of RNA functions. Conventional ENM model,
a particularly effective harmonic potential-based method for exploring
the large-amplitude collective motions, performs not ideally for usually
loosely folded RNAs. In this study, the mGNM with multiscale inter-
actions considered is extended to the reproduction of dynamical

Fig. 5. Absolute deviations between experimental and theoretical B-factors obtained by conventional GNM and mGNM models for the nucleotides with different
packing densities (denoted as number of neighbors).
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information for RNAs. The results show that mGNM achieves a sig-
nificant improvement in flexibility prediction, especially for the loosely
packed parts, and additionally, mGNM can properly make domain de-
compositions.
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